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Goldstone modes and electromagnon fluctuations in the conical cycloid state of a multiferroic
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Using a phenomenological Ginzburg-Landau theory for the magnetic conical cycloid state of a multiferroic,
which has been recently reported in the cubic spinel CoCr,O4, we discuss its low-energy fluctuation spectrum.
We identify the Goldstone modes of the conical cycloidal order and deduce their dispersion relations whose
signature anisotropy in momentum space reflects the symmetries broken by the ordered state. We discuss the
soft polarization fluctuations, the “electromagnons,” associated with these magnetic modes and make several
experimental predictions which can be tested in neutron-scattering and optical experiments.
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I. INTRODUCTION

Although ferromagnetism and antiferromagnetism are the
two most widely studied forms of magnetic order, more com-
plicated spatially modulated magnetic order parameters are
also important and interesting from both fundamental and
technological perspectives. A salient example, which occurs
in the new class of “multiferroics”!~*—materials that display
an amazing coexistence and interplay of long-range magnetic
and ferroelectric orders—is magnetic transverse helical, or
“cycloidal,” order. This order has acquired prominence®®
since it can induce, via broken spatial inversion symmetry,%’
a concomitant electric polarization (P) in a class of ternary
oxides, leading to interesting physics of competing and col-
luding ordering phenomena as well as potential
applications.!* Among the exciting class of multiferroic ma-
terials, the cubic spinel oxide CoCr,0, is even more unusual
since it displays not only the coexistence of P with a spa-
tially modulated magnetic order but also with a uniform
magnetization (M) (Ref. 16) in a so-called “conical cycloid”
state (see below).

Since in the conical cycloid state, the long-range magnetic
and polar orders are intertwined, it is crucial to understand
the associated soft modes (i.e., low-energy collective excita-
tions), which should also be “hybridized,” leading to intrigu-
ing potential applications based on the electronic excitation
of spin waves!® and vice versa. A second motivation for
studying the soft collective-mode spectrum of a system with
a complicated set of order parameters, such as the conical
cycloid state, is that the Goldstone modes themselves carica-
ture the underlying pattern of the broken symmetries and,
thus, strengthen the understanding of the ordered state itself.
In this paper, we do this by first identifying the magnetic
Goldstone modes (i.e., magnons or spin waves) of the coni-
cal cycloidal order and deducing their dispersion relations
which, as we clarify, simply reflect the complex anisotropic
pattern of the underlying broken symmetries. We make sev-
eral predictions for inelastic neutron-scattering experiments
based on our results for the magnetic fluctuations. We then
identify the associated soft polarization fluctuations, which
constitute a dielectric manifestation of the magnetic modes,
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“electromagnons,” which can be observed in optical experi-
ments. The interesting interplay of magnons and electromag-
nons in cubic multiferroics is the topic of this paper.

CoCr,0,, with the lattice structure of a cubic spinel, en-
ters into a state with a uniform magnetization at a tempera-
ture 7,,=93 K. Microscopically, the magnetization is of fer-
rimagnetic origin,'® and in what follows we will only
consider the ferromagnetic component, M, of the magnetiza-
tion of a ferrimagnet. At a lower critical temperature, 7.
=26 K, the system develops a spatial helical modulation of
the magnetization in a plane transverse to the large uniform
component. Such a state, for general helicoidal modulation
transverse to the uniform magnetization, can be described by
an order parameter,

Mhzmlél COS(q'r)‘széz Sin(q'r)+m3é3, (1)

where {é,;} form an orthonormal triad. When the pitch vector,
q, is normal to the plane of the rotating components, the
rotating components form a conventional helix.”> A more
complicated modulation arises when q lies in the plane of
the rotating components. For m;=0, we will call such a state,
which has been recently observed in a number of multifer-
roic ternary oxides,>*7-15 an “ordinary cycloid” state be-
cause the profile of the magnetization resembles the shape of
a cycloid. The cycloid state with m;#0 will be called a
conical cycloid state because the tip of the magnetization
falls on the edge of a cone (see Fig. 1). This is the low-
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FIG. 1. (Color online) The conical cycloid state with the mean-
field order parameter given in Eq. (2). The spins rotate along the
pitch vector, q, on the cycloidal (x—y) plane. The uniform compo-
nent, ms3, which is along the Z direction makes the magnetization tip
fall on the edge of a cone. The polarization, P, is perpendicular to
both q and the uniform magnetization.
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temperature magnetic ground state in CoCr,0, and is re-
sponsible for its many unusual properties for, e.g., the ability
to tune P via tuning the uniform piece of the magnetization
by a small magnetic field ~0.5 T.!¢ Notice that these states
break the spin rotational and the coordinate space rotational,
translational, and inversion symmetries. It is easy to visual-
ize that the helical, but not the cycloidal, modulation pre-
serves a residual coordinate space U(1) symmetry (followed
by a translation) about the pitch vector.

II. INTUITIVE UNDERSTANDING
OF THE GOLDSTONE MODES

To gain an intuitive understanding of the Goldstone
modes, let us first consider the broken symmetries of the
conical cycloid state, with a representative mean-field order
parameter,

M (r) =[m, cos(gx),m, sin(gx),ms], ()

shown in Fig. 1. As mentioned above, this state breaks the
spin space rotation and the coordinate space rotation and
translation symmetries. Note, however, that the translation
symmetry is broken only in the direction of q. Since trans-
lational symmetry is spontaneously broken in this system,
uniform translations along the direction of q, which can be
parametrized by the phase fluctuation ¢(r), where the fluc-
tuating magnetization may be given by M(r)={m; cos[gx
+¢(r)],m, sin[gx+ ¢(r)],ms}, must be a Goldstone mode. It
is important to realize, however, that the elastic energy for
this fluctuation cannot involve (&)xp)z,(ﬁch)z, while it must
involve the longitudinal component, (d,¢)?. This is because a
uniform rotation of q, ¢(r)=ay+ Bz, rotating the pitch vector
from (¢,0,0) to (¢, @, B) must not cost any energy since the
underlying Hamiltonian is assumed to be rotationally invari-
ant. The elastic energy must include (ﬁx(p)Z, however, since a
change in the magnitude of q does cost energy. Thus, in
momentum space, the dispersion relation for this Goldstone
mode should be much softer in the directions transverse to q
than in the longitudinal direction.

The absence of a residual symmetry about q gives rise to
a second Goldstone mode in the conical cycloid state. Notice
that a uniform rotation of the cycloidal plane and the uni-
form magnetization about ¢ do not cost energy, and there-
fore, such a rotation at long wavelengths must cost vanishing
energy. In the conventional helical state, this mode is already
contained in the phase ¢ since a uniform translation of a
circular helix along its pitch axis (i.e., a uniform ¢) is
equivalent to a rotation about the pitch axis by ¢. The Gold-
stone mode fluctuations in the conical cycloid state are de-
picted pictorially in Fig. 2.

III. GINZBURG-LANDAU HAMILTONIAN

Since M and P, respectively, break time reversal and spa-
tial inversion symmetry, the leading P-dependent piece in a
Ginzburg-Landau Hamiltonian density, 4p, for a centrosym-
metric time-reversal invariant system with cubic symmetry
is®
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FIG. 2. (Color online) Left: the magnetic Goldstone mode « of
the conical cycloid state. For an arbitrary small fluctuation of the
pitch vector, q, the cycloidal plane and the uniform magnetization
must also rotate by angles J, and &, about the axes y and z, respec-
tively, for a zero energy deformation. Right: the other Goldstone
mode J,. J, describes the rotation fluctuation of the entire system
about the pitch vector and, if spatially uniform, costs no energy. For
clarity, the rotations of m3 and P are not shown.

hp=P*2x+aP -M XV XM, (3)

where x>0 and « are coupling constants. We assume that P
is a slave of M in the sense that a nonzero P only occurs due
to the spontaneous development of a magnetic state with a
nonzero M X VX M. We consider a full Hamiltonian that is
completely invariant under simultaneous rotations of posi-
tions and magnetization. This guarantees that any phase that
can occur in our model is necessarily allowed in a crystal of
any symmetry. The full Hamiltonian is given by*' H=[(h,,
+hp)dr= [hdr. Using P=—yaM X V X M to eliminate P, we
can write the total Hamiltonian density / entirely in terms of
M,

h=M?+uM* + K(V-M)? + K, (V X M)? + K,MA(V - M)?
+ KM -V X M)?>+ KM X V X M|* + D;|V(V - M)|?
+DV(VXM)|?, 4)

where we have u, D; >0 for stability. Due to competing
magnetic interactions, some of the K; can be negative.

To discuss the parameter space for the conical cycloid
state, ¢ is assumed to cross zero at T,,, and the system enters

into a state with a uniform magnetization my=—t/2u. As T
drops further, the elliptic conical cycloid state, with the uni-
form magnetization normal to the cycloidal plane and q in
the plane of the cycloid, i.e., with a representative order pa-
rameter given by Eq. (2), is the lowest energy state in the
regime <0, K3<0, K,<0, and 0<K, <—K3m§. In this re-
gime, Eq. (2) defines the ground state among all the possible
states with arbitrary mutual angles between the uniform
magnetization, q, and the cycloid plane. K, and K, are rela-
tively unimportant for this state [Eq. (2) satisfies the saddle-
point equations with or without them], therefore, in what
follows, we will set K,=K,=0 for simplicity.?!

IV. GOLDSTONE MODES IN THE CONICAL
CYCLOID STATE

To identify the Goldstone modes and to calculate their
correlation functions, we follow standard methods: we first
write M as its mean-field solution (describing the conical
cycloid state) plus the fluctuations. We then substitute this
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total M in the Hamiltonian [Eq. (4)] and expand the Hamil-
tonian to the second order in the fluctuation modes. A
straightforward (though tedious) diagonalization of the fluc-
tuation piece of the Hamiltonian would then produce the
fluctuation modes (eigenvectors) and their energy dispersions
(eigenvalues). As we will see below, there are four fluctua-
tion modes of the conical cycloid state among which two are
massive and the other two (a and &, see below) are soft
(Goldstone modes) in the long-wavelength limit. By invert-
ing the fluctuation part of the Hamiltonian, one can also read
off the correlation functions of the soft modes from the ma-
trix elements.

To begin, we write the total magnetization as M=M,
+ oM, where 6M describes the fluctuations above the saddle-
point solution M,.. Generally, M can be written as

—m3d, + my cos(gx + ¢) —m, 8. sin(gx + ¢)
M =| —m36, + m; sin(gx + @) + m; 5, cos(gx + ¢) |, (5)
ms + dym; cos(gx + @) + 8,m; sin(gx + @)

where ¢ describes the fluctuation of q and 6, and &, describe
the rotation of the cycloidal plane and m; about the y and the
z axes, respectively. Note that, for the circular cycloidal state
(m=m,), 6. can be taken to be zero since it only renormal-
izes ¢ in this case. &, describes the rotation of the cycloidal
plane about the pitch vector itself. Expanding M to first order
in the fluctuation variables, we have
—m36, — (pm| + 6.m,)sin gx

M = —m38, + (emy + 8.m;)cos gx |. (6)
é,m; cos gx + d,m, sin gx

To obtain the soft modes, we expand the Hamiltonian to
second order in SM. It is easy to check that the coefficient of
the first-order term is zero from the saddle-point equations.
The second order gives

OH = t(6M)? + u[2M2(6M)? + 4(M,. - 6M)]
+D|[V(V - SM)|> + D4|V(V X M)|* + Ko[(V - sM)*]
+K[(VX M)+ K;(SM-V X M, +M, -V X 6M)?
+2K5M,.-VXM_][M -V X sM]. (7)

Substituting Eq. (6) into Eq. (7), taking the Fourier
transform, and denoting d=¢, we find OH
=2,.:;9%(-p)[';;(p)5,(p), where i and j run from 0 to 3. For
brevity, we omit the full form of the 4 X4 matrix I" here.

We should note, at this point, that in order for the fluctua-
tion mode ¢ and, in effect, the direction fluctuation of q to
cost vanishing energy for infinite wavelengths, the cycloidal
plane and the uniform magnetization themselves must rotate
about the y and the z axes. The true Goldstone mode, for the
third rotation fluctuation 6,=0, must then be a linear combi-
nation of ¢, 6, and &.. To capture this soft mode, we first take
0,=0 and diagonalize the resulting 3 X 3 matrix. The eigen-
values for two eigenvectors, (3,7, remain nonzero even
when the momentum p— 0 (massive modes), but the other
eigenvalue becomes zero in this limit (soft mode). The cor-
responding eigenstate of the soft mode, to linear order in
p=|p|, is given by
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a=¢(p) +ip.6,(p)/q +ip,5.(p)/q. (8)

This is one of the two cycloidal Goldstone modes found in
this paper (see Fig. 2). To order p?, we have the correspond-
ing eigenvalue,

wy = 2(m% + m%)qui. 9)

As expected, there is no contribution from Dy>D; at this order.
As emphasized before, this is a reflection of the rotational
symmetry of the underlying Hamiltonian. The next-higher-
order contribution to the Goldstone mode eigenvalue is given
by w1=u1p3+uzpj+u3pi+u4p§p§+u5p§p§+u6p§p§, where
the u;’s are functions of m;, m,, and m; and the coupling
constants K, K|, K3, and D, ;.

The other Goldstone mode of the conical cycloid state is
simply the mode &, (see Fig. 2), with the momentum space
dispersion relation starting at the order p)zc, pi, p?. As ex-
plained before, spatially uniform rotation of the whole sys-
tem about the direction =X does not cost energy, so the
long-wavelength fluctuations, represented by J,, cost vanish-
ing energy.

In the presence of lattice and spin anisotropies, the fore-
going results are valid only above the anisotropy energies.
The anisotropic dispersion of the mode a crosses over to a
more isotropic dispersion, one which depends quadratically
on all of p,, p,, p., below the lattice anisotropy energy. How-
ever, it continues to remain a true Goldstone mode because
of the broken translational symmetry. In this respect, this
cycloidal magnon is analogous to the phonon mode in a crys-
tal rather than a true magnon mode. Below the weak spin
anisotropy energy, the other Goldstone mode, J,, should ac-
quire a gap given by this spin anisotropy energy.

In the most general case, the two soft modes will couple.
In terms of the corresponding eigenstates, the 4 X 4 matrix
can be rewritten as a 2 X2 matrix (plus unimportant contri-
butions coming from the massive modes),

( 2(m% + m%)qui + w,

— PPVo = ip.pPIIG )
= PPVo+IpDyP U1/

F(p?) + m5Dp*2
(10)
where v,,v, are constants and f(p?) is a second-order poly-

nomial function of p,, Py» Pz By inverting this matrix, we
find

Caa(p) = E 77:P12/A(P) 5

i=X,y,2
Cs.5(p) =[4(g1 +2)q’ps + w0 VA(p),

Cus(P) =pp0o/Alp), (11)

C/.Lv(p) =<M(—P) V(P»,
+ 012y npi+- - is the determinant of matrix (10), and the
n;’s and the B;’s are constants. Remarkably, for p,=0, we
find

where

_ -1
Caa(p)=w11~< > p?ﬁ-) ,

i,j=y,2
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Cs.5P) ~ (Bpy+ Bp2)™" ~ < > p,-z>_1,

i=y,2

Cos () =0, (12)

so there is no contribution from p, and p, to order p? in the
C,.(p) correlator, as expected.

V. MAGNETIZATION CORRELATIONS
AND NEUTRON SCATTERING

From the energy resolved neutron-scattering cross sec-
tions near p=gq, it should be possible to track the p-space
dispersions of the fluctuation modes «, B, vy, and &.'4
Most notably, the anisotropic dispersion ~wy+w; of the
mode «, caricaturing the complex broken symmetries of the
conical cycloidal order, should be experimentally testable.
Using the soft-mode eigenvectors, we can calculate the full
static magnetic-susceptibility tensor, x;;=(M,(-p)M;(p))
=(6M(-p) M ,(p)). For instance, the dominant terms of y;
are

2
P 1
Xxx -~ m%q_gcaa(p) + Zm%[caa(p - q) + Caa(p + q)]’

1
Xyy ~ m3Cs 5 (p) + Zmi[Cw(p —q) +Coulp+ )],

_mip?
4q2

Xzz [Caa(p —q)+ Co(p+ Q)]

1 P
+ ng[ctsxﬁx(l) -q)+Cs5(p+q)]- EmlmZ[Caﬁx(p

+q) = Cos (P-q) +Cs4(p+a) - Csolp—q)]. (13)

It follows that the susceptibility functions diverge both at p
=0 and p= * q for the conical cycloid state, the divergence
at p=0 originating from the fluctuations of m;.

The susceptibility functions show different behaviors
when p approaches *£q or 0 along different directions in
momentum space. For instance, when p—q along p,, all x;;
diverge as (p,—¢)~2. On the other hand, when p— q along y
or z directions, x,, and x,, scale as pi"4 and x,, scales as pi_z.
In neutron-scattering experiments, the following quantity is

related to the frequency integrated scattering cross section:*?

* 1 w d*o
X(P)Nf_mdw;[l—exp<— ;)i|dew’ (14)

where X(p)=(5,<j—l‘7p4‘2"))(,-j, w is the frequency, and () is a
solid angle. Near p=q, the dominant terms in y(p) are

1 1
X(p) ~ m:CaoP = @) + ymCop(P-)-  (15)

When p—q along p,, x(p)~(p,—¢)™% In contrast, when
p—q from the p, or p_ directions, the divergence goes as

x(p)~pi*.
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VI. POLARIZATION CORRELATIONS
AND ELECTROMAGNONS

The static dielectric susceptibility tensor, Yj;, is propor-
tional to the polarization correlation functions, x;;(p)
«(P;(—=p)P;(p)). They can be straightforwardly derived by
using P~M X V XM and the magnon correlation functions
C,.,(p). For brevity, we do not give here the full expressions
for the polarization correlation functions. Typically, the cor-
relation functions transverse to P diverge near p=0 and p
=q due to the magnetic Goldstone modes in the conical cy-
cloid state. Since the underlying magnons manifest them-
selves in the dielectric response of the system, these fluctua-
tions are sometimes called electromagnon fluctuations.'3?3

Since the typical optical wavelengths ~O(100 nm) are
much longer than the lattice constants ~O(1 A), we only
discuss here the behavior near p~0. Note that the fluctua-
tions near q may also be influenced by the so-called sym-
metric couplings between P and M,>* which do not contrib-
ute to the uniform macroscopic P. We will ignore these
effects here since they are not accessible by the experiments.
The transverse correlator along the direction of m; always
diverges in this limit, (P.(-p)P.(p))~p;*> [i=x,y,z,
pj(#p;)=0]. This divergence arises from the mode &,, which
rotates the cycloidal plane about X yielding a fluctuation of P
along z. The other transverse susceptibility also diverges,
(P (-p)P.(p))~ p;2, for p,,p.=0. This divergence arises
from the Goldstone mode «. Note that the mode « includes
the rotation fluctuation &,, which induces a polarization fluc-
tuation along X. These characteristic divergences should be
observable as peaks in the appropriate static dielectric con-
stants, revealing the existence of the electromagnon fluctua-
tions in the conical cycloid state. In the conical cycloid state,
but not in the ordinary cycloid state, the polarization corre-
lation functions diverge also near p=gq, the coefficient of
proportionality of the diverging piece being ms, but these
electromagnon fluctuations will be difficult to see in optical
experiments because of the nonzero momentum.

VII. CONCLUSION

To summarize, we have identified and discussed the mag-
netic and polarization fluctuation modes of the conical cyc-
loidal order in a multiferroic. One of our primary predictions
is the unusual dispersion relations of these soft modes, which
can be experimentally tested on CoCr,QO,, thereby revealing
the complex pattern of the broken symmetries and their as-
sociated Goldstone modes. We also predict the divergence of
the magnetization and the polarization correlation functions;
the latter reveals the hybridized soft mode, the electro-
magnon.
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